FANDOM


Transformasi Laplace adalah suatu teknik untuk menyederhanakan permasalahan dalam suatu sistem yang mengandung masukan dan keluaran, dengan melakukan transformasi dari suatu domain pengamatan ke domain pengamatan yang lain.

Dalam matematika jenis transformasi ini merupakan suatu konsep yang penting sebagai bagian dari analisa fungsional, yang dapat membantu dalam melakukan analisa sistem invarian-waktu linier, seperti rangkaian elektronik, osilator harmonik, devais optik dan sistem-sistem mekanik. Dengan mengetahui deksripsi matematika atau fungsional sederhana dari masukan atau keluaran suatu sistem, transformasi Laplace dapat memberikan deskripsi funsional alternatif yang kadang dapat menyederhanakan proses analisa kelakukan dari sistem atau membuat suatu sistem baru yang berdasarkan suatu kumpulan spesifikasi.

Dalam sistem fisik sebenarnya transformasi Laplace sering dianggap sebagai suatu transformasi dari cara pandang domain-waktu, di mana masukan dan keluaran dimengerti sebagai fungsi dari waktu, ke cara pandang domain-frekuensi, di mana masukan dan keluaran yang sama dipandang sebagai fungsi dari frekuensi angular kompleks, atau radian per satuan waktu. Transformasi ini tidak hanya menyediakan cara mendasar lain untuk mengerti kelakukan suatu sistem, tetapi juga secara drastis mengurangi kerumitan perhitungan matematika yang dibutuhkan dalam menganalisa suatu sistem.

Transformasi Laplace memiliki peran penting dalam aplikasi-aplikasi dalam bidang fisika, optik, rekayasa listrik, rekayasa kendali, pemrosesan sinyal dan teori kemungkinan.

Nama transformasi ini diberikan untuk menghormati seorang ahli matematika dan astronomi, Pierre-Simon Laplace, yang menggunakan teknik transformasi ini pada hasil karyanya dalam teori kemungkinan. Sebenarnya teknik ini ditemukan sebelumnya oleh Leonhard Euler, seorang ahli matematika prolific Swiss abad kedelapanbelas.

Definisi formalEdit

Transformasi Laplace dari suatu fungsi f(t), yang terdefinisi untuk semua nilai t riil dengan t ≥ 0, adalah fungsi F(s), yang didefinisikan sebagai:

F(s)  = \mathcal{L} \left\{f(t)\right\}  =\int_{0^-}^\infty e^{-st} f(t)\,dt.

Limit bawah 0^- adalah kependekan dari  \lim_{\epsilon \rightarrow +0} -\epsilon \ dan memastikan inklusi dari keseluruhan fungsi delta Dirac  \delta (t) \ pada 0 jika terdapat suatu impuls dalam f(t) pada 0.

Secara umum parameter s bernilai kompleks:

s = \sigma + i \omega \,

Jenis transformasi integral ini memiliki sejumlah sifat yang membuatnya amat berguna bagi analisa sistem dinamik linier. Keunggulan utama dari cara ini adalah mengubah proses diferensiasi menjadi perkalian dan integrasi menjadi pembagian, dengan adanya s (Hal ini mirip dengan fungsi logaritma yang mengubah operasi perkalian dan pembagian menjadi penjumlahan dan pengurangan). Perubahan persamaan integral dan diferensial menjadi bentuk polinomial menyederhanakan proses penyelesaian.

Templat:Matematika-stub

ar:تحويل لابلاس bg:Трансформация на Лаплас cs:Laplaceova transformace de:Laplace-Transformation en:Laplace transform es:Transformada de Laplace eo:Vikipedio:Projekto matematiko/Laplaca konverto fr:Transformée de Laplace gl:Transformada de Laplace ko:라플라스 변환 ia:Transformation de Laplace it:Trasformata di Laplace he:התמרת לפלס nl:Laplacetransformatie ja:ラプラス変換 pl:Transformata Laplace'a pt:Transformada de Laplace ru:Преобразование Лапласа sl:Laplaceova transformacija sr:Лапласова трансформација sv:Laplace-transform zh:拉普拉斯变换

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on FANDOM

Random Wiki